Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 321(2): H369-H381, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34213390

ABSTRACT

Cardiopulmonary sympathetic control is exerted via stellate ganglia (SG); however, little is known about how neuronal firing patterns in the stellate ganglion relate to dynamic physiological function in the heart and lungs. We performed continuous extracellular recordings from SG neurons using multielectrode arrays in chloralose-anesthetized pigs (n = 6) for 8-9 h. Respiratory and left ventricular pressures (RP and LVP, respectively) and the electrocardiogram (ECG) were recorded concomitantly. Linkages between sampled spikes and LVP or RP were determined using a novel metric to evaluate specificity in neural activity for phases of the cardiac and pulmonary cycles during resting conditions and under various cardiopulmonary stressors. Firing frequency (mean 4.6 ± 1.2 Hz) varied spatially across the stellate ganglion, suggesting regional processing. The firing pattern of most neurons was synchronized with both cardiac (LVP) and pulmonary (RP) activity indicative of cardiopulmonary integration. Using the novel metric to determine cardiac phase specificity of neuronal activity, we found that spike density was highest during diastole and near-peak systole. This specificity was independent of the actual LVP or population firing frequency as revealed by perturbations to the LVP. The observed specificity was weaker for RP. Stellate ganglion neuronal populations exhibit cardiopulmonary integration and profound specificity toward the near-peak systolic phase of the cardiac cycle. This novel approach provides practically deployable tools to probe stellate ganglion function and its relationship to cardiopulmonary pathophysiology.NEW & NOTEWORTHY Activity of stellate ganglion neurons is often linking indirectly to cardiac function. Using novel approaches coupled with extended period of recordings in large animals, we link neuronal population dynamics to mechanical events occurring at near-peak systole. This metric can be deployed to probe stellate ganglion neuronal control of cardiopulmonary function in normal and disease states.


Subject(s)
Heart/physiology , Neurons/physiology , Pressure , Respiratory Physiological Phenomena , Stellate Ganglion/physiology , Stress, Physiological/physiology , Ventricular Pressure/physiology , Animals , Aorta , Cardiac Pacing, Artificial , Electrocardiography , Microelectrodes , Respiratory Function Tests , Respiratory Mechanics , Spatio-Temporal Analysis , Stellate Ganglion/cytology , Sus scrofa , Swine , Sympathetic Nervous System/physiology , Vena Cava, Inferior
2.
Cardiovasc Res ; 117(9): 2083-2091, 2021 07 27.
Article in English | MEDLINE | ID: mdl-32853334

ABSTRACT

AIMS: Enhanced sympathetic activity during acute ischaemia is arrhythmogenic, but the underlying mechanism is unknown. During ischaemia, a diastolic current flows from the ischaemic to the non-ischaemic myocardium. This 'injury' current can cause ventricular premature beats (VPBs) originating in the non-ischaemic myocardium, especially during a deeply negative T wave in the ischaemic zone. We reasoned that shortening of repolarization in myocardium adjacent to ischaemic myocardium increases the 'injury' current and causes earlier deeply negative T waves in the ischaemic zone, and re-excitation of the normal myocardium. We tested this hypothesis by activation and repolarization mapping during stimulation of the left stellate ganglion (LSG) during left anterior descending coronary artery (LAD) occlusion. METHODS AND RESULTS: In nine pigs, five subsequent episodes of acute ischaemia, separated by 20 min of reperfusion, were produced by occlusion of the LAD and 121 epicardial local unipolar electrograms were recorded. During the third occlusion, left stellate ganglion stimulation (LSGS) was initiated after 3 min for a 30-s period, causing a shortening of repolarization in the normal myocardium by about 100 ms. This resulted in more negative T waves in the ischaemic zone and more VPBs than during the second, control, occlusion. Following the decentralization of the LSG (including removal of the right stellate ganglion and bilateral cervical vagotomy), fewer VPBs occurred during ischaemia without LSGS. During LSGS, the number of VPBs was similar to that recorded before decentralization. CONCLUSION: LSGS, by virtue of shortening of repolarization in the non-ischaemic myocardium by about 100 ms, causes deeply negative T waves in the ischaemic tissue and VPBs originating from the normal tissue adjacent to the ischaemic border.


Subject(s)
Action Potentials , Heart Rate , Heart/innervation , Myocardial Ischemia/complications , Stellate Ganglion/physiopathology , Ventricular Premature Complexes/etiology , Animals , Disease Models, Animal , Electric Stimulation , Female , Myocardial Ischemia/physiopathology , Sus scrofa , Time Factors , Ventricular Premature Complexes/physiopathology
3.
JCI Insight ; 5(3)2020 02 13.
Article in English | MEDLINE | ID: mdl-31846438

ABSTRACT

Chronic sympathoexcitation is implicated in ventricular arrhythmogenesis (VAs) following myocardial infarction (MI), but the critical neural pathways involved are not well understood. Cardiac adrenergic function is partly regulated by sympathetic afferent reflexes, transduced by spinal afferent fibers expressing the transient receptor potential cation subfamily V member 1 (TRPV1) channel. The role of chronic TRPV1 afferent signaling in VAs is not known. We hypothesized that persistent TRPV1 afferent neurotransmission promotes VAs after MI. Using epicardial resiniferatoxin (RTX) to deplete cardiac TRPV1-expressing fibers, we dissected the role of this neural circuit in VAs after chronic MI in a porcine model. We examined the underlying mechanisms using molecular approaches, IHC, in vitro and in vivo cardiac electrophysiology, and simultaneous cardioneural mapping. Epicardial RTX depleted cardiac TRPV1 afferent fibers and abolished functional responses to TRPV1 agonists. Ventricular tachycardia/fibrillation (VT/VF) was readily inducible in MI subjects by programmed electrical stimulation or cesium chloride administration; however, TRPV1 afferent depletion prevented VT/VF induced by either method. Mechanistically, TRPV1 afferent depletion did not alter cardiomyocyte action potentials and calcium transients, the expression of ion channels, or calcium handling proteins. However, it attenuated fibrosis and mitigated electrical instability in the scar border zone. In vivo recordings of cardiovascular-related stellate ganglion neurons (SGNs) revealed that MI enhances SGN function and disrupts integrated neural processing. Depleting TRPV1 afferents normalized these processes. Taken together, these data indicate that, after MI, TRPV1 afferent-induced adrenergic dysfunction promotes fibrosis and adverse cardiac remodeling, and it worsens border zone electrical heterogeneity, resulting in electrically unstable ventricular myocardium. We propose targeting TRPV1-expressing afferent to reduce VT/VF following MI.


Subject(s)
Afferent Pathways , Myocardial Infarction/physiopathology , Myocardium/metabolism , Signal Transduction , TRPV Cation Channels/metabolism , Ventricular Remodeling , Afferent Pathways/drug effects , Animals , Disease Models, Animal , Diterpenes/administration & dosage , Heart/physiopathology , Humans , Myocardial Infarction/metabolism , Neurotoxins/administration & dosage , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...